If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-11b=-19
We move all terms to the left:
b^2-11b-(-19)=0
We add all the numbers together, and all the variables
b^2-11b+19=0
a = 1; b = -11; c = +19;
Δ = b2-4ac
Δ = -112-4·1·19
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-3\sqrt{5}}{2*1}=\frac{11-3\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+3\sqrt{5}}{2*1}=\frac{11+3\sqrt{5}}{2} $
| 11/3+z=-5/6 | | r^2-2=-20 | | -.5(x-4)=-x-5 | | 3+x-2=-4+6 | | m^2+4m=19 | | 3+4x-2x=15 | | 64x^2-14x=0 | | x–6.2=7.55 | | -11=-6(3+6p)+7(1-7p) | | 10m^2-16=64 | | -5n-1=2(-7n+4) | | 48=u+5u | | 7x-21=6x+2 | | -4(8n-4)=-38-5n | | 3a-54=180 | | 81=17y-8y | | -80=-16t^2+64t | | 6/9=x/18 | | 8x-40=64 | | q+83=903 | | 8(4x+4)=32+8x | | -3(x-1)=4x-11 | | 2(x-3)=3x+34 | | 1=7−2b | | −2(−3b+4.8)=14.4 | | 3/7(-28a+21)=129 | | -7v+26=2(v-5) | | -90+13x-6x=36 | | -9+13x-6x=36 | | 6(v+2)=3v-9 | | 5b+4=3b+-4 | | 47=3–6y |